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Abstract

Lattice reduction (LR) aided detections have attracted great attention in the symbol detection of multiple-input
multiple-out (MIMO) communication, especially for systems with larger scale antennas. Recently, the Lenstra-
Lenstra-Lovász (LLL) based incremental LR (ILR) algorithms have been proposed to employ an early termination
to jointly conduct the LR and retrieve the symbol based on a partial successive interference cancellation (SIC)
detection, which induces a significant performance improvement. In this paper, we propose to apply the Seysen’s
algorithm (SA) to the ILR. After providing the feasibility analysis, two novel SA involved algorithms are introduced
and studied. Particularly, a new sorted QR decomposition based SA algorithm is proposed and tested as it plays a
key role in the SIC detection. Subsequently, a novel SA based ILR scheme is further developed and investigated.
By simulations, we show that the proposed approach outperforms conventional LLL based ILR in various aspects,
while only a marginal increment in the complexity, restricted to medium SNR regions, is observed.

I. INTRODUCTION

In order to meet the demands on the high transmission capacity and spectral efficiency requirements
of modern wireless communication systems [1], the multiple-input multiple-out (MIMO) technique has
been proposed and is regarded as an appropriate solution, owing its capability to provide multiplexing
and diversity gain without requiring additional spectral resources. More recently, evolving from the
conventional MIMO technique, massive MIMO, which employs very large number of antennas, has
attracted great attention and will play a crucial role in 5G [2], [3]. To take the full advantage of it,
an efficient symbol detection must be conducted at the receiver side. It is well-known that the maximum
likelihood (ML) detector could provide the optimal symbol detection and the sphere decoder is usually
employed to approximate this optimal solution [4], while the high complexity prohibits them from a
practical implementation for MIMO systems, especially the one with a large number of antennas and
high modulation orders. Hence, suboptimal linear and nonlinear detectors with low complexity are often
employed [5], [6], [7]. However, these schemes cannot obtain the full receive diversity and experience a
significant performance loss. Observing this, the lattice reduction (LR) technique is introduced to improve
their performance [8], [9], [10], [11]. It has been proven that the LR-aided linear [12] and successive
interference cancellation (SIC) [13] detectors are able to achieve the same diversity order as the ML
detector, as the LR provides a near orthogonal channel matrix to reform the system model [14].

Moreover, a lot of research has been done to directly reduce the complexity of LR algorithms. In par-
ticular, as enjoying a polynomial computational complexity, the Lenstra-Lenstra-Lovász (LLL) algorithm
has been wildly considered in the LR-aided MIMO detection [15], [16]. An effective LLL algorithm is
proposed in [17], it reduces the complexity of the original one by only conducting the size reduction on
pairs of the consecutive basis vectors. In [18], a complex value based LLL (CLLL) is introduced with an
ability to reduce the size of the channel matrix by half. In order to bound the complexity of the LLL,
a fixed-complexity LLL (fcLLL) is proposed in [19]. The methods to further reduce the complexity of
fcLLL can be found in [20], [21], [22]. Instead of only treating the LR and detection as two separate
parts, an approach referred to as incremental LR (ILR) is recently proposed in [23], which optimises the
LR and SIC process simultaneously. It is realized by utilizing a reliability assessment (RA) [24], [25] to
early terminate (ET) the intermediate process of LR.

However, all the above studies are based on LLL, which has the following limitations: i.) The orthog-
onality of the LLL-reduced basis can still be further improved; ii.) The LLL can only find an orthogonal
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basis of the lattice which is spanned by the channel matrix. The inverse of the channel matrix is not taken
into consideration in the LR process. Therefore, this motivates us to study an alternative and promising LR
scheme, the Seysen’s Algorithm (SA) [26]. Some SA variants with reduced complexity are also proposed
in [27], [28]. And the SA based detectors are introduced and evaluated in [29], [30]. However, the SA
has not been extended to the ILR yet.

In this paper, we propose to apply the SA instead of the LLL algorithms in the ILR operation. After
providing the feasibility analysis, we first introduce a novel sorted QR decomposition (SQR) based SA,
which is realized by updating the output matrices Q and R from the SQR iteratively. It enables us to
conduct an SIC detection directly in the intermediate step of the SA reduction, which is crucial as the
conventional SA algorithms cannot provide the necessary Q and R immediately to facilitate this SIC
detection and the ILR must perform the ET based on this detection. With the help of the SQR based SA,
a novel SA based ILR algorithm is introduced and studied.

The remainder of this paper is organized as follows. In Section II, the system model, LR-aided detection
techniques and LR methods are introduced. We validate the feasibility of employing SA to the ILR scheme
at the beginning of Section III. And two proposed SA related algorithms are elaborated in this section as
well. The performance of these algorithms are evaluated based on the simulation results in Section IV.
Finally, Section V concludes this paper.

Notation: The super scripts (·)T , (·)∗ and (·)H denote the transpose, conjugate and Hermitian, respec-
tively. The matrices and column vectors are represented by upper and lower bold face letters. We denote
the n-th element of a vector h by hn and the (m,n)-th entry of matrix H by Hm,n. A submatrix of H
with elements of the a-th to the b-th row and the c-th to the d-th column is represented by the bold italic
letter Ha:b,c:d. If all the rows or columns are selected, the subscript can be shortened to : . Thus the i-th
column vector of H is H:,i. We reserve E [·] for the expectation, |·| for the absolute value of a scalar, ‖·‖
for the 2-norm of a vector, <(·) and =(·) for the real and imaginary parts.

II. PRELIMINARIES

In this section, we first introduce the system model and the associated LR aided detections. Subsequently,
an overview of LLL and SA is given.

A. System Model
In this section, we first introduce the system model and then describe the associated traditional detection

methods. A MIMO system with Nt transmit and Nr receive antennas is considered here, and in particular,
we assume Nt ≤ Nr. Denote by s the transmitted symbol. Thus, s is an Nt × 1 vector [s1, s2, . . . , sNt ]

T ,
while each entry of the vector is an element of a constellation setM, i.e., si ∈M, where i = 1, 2 . . . , Nt.
Moreover, we assume that the transmitting power of each antenna is one, which means E

[
ssH
]

= INt .
Matrix H denotes the channel matrix of size Nr × Nt, which remains unchanged at each signalling
interval. Note that H represents a general channel matrix, i.e., could represent either canonical or spatial
correlation channels. We assume the system is perfectly synchronised and the channel state information
(CSI) is known at the receiver. Thus, the received Nr × 1 vector y is

y = Hs + n, (1)

where n is the additive white Gaussian noise (AWGN) vector with zero mean and covariance matrix
E
[
nnH

]
= σ2

nINr . Therefore, the signal-to-noise ratio (SNR) of each antenna at the receiver side is given

as SNR =
NtE[sHs]

σ2
n

.
Obviously, in order to retrieve the transmitted symbol s at the receiver side, a detector is necessary.

The optimal solution is the maximum likelihood (ML) detector. However, the complexity of it grows
exponentially with the size of the constellation set M and the number of transmit antennas Nt, which
makes it infeasible for practical systems. To reduce the complexity, the detections with suboptimal solutions
are used more commonly, including the linear and nonlinear cases.
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Generally, there are two types of linear detections, i.e., ZF and MMSE. The ZF detector only requires
knowledge of the channel matrix H while the MMSE detector also takes the power of the Gaussian noise
σ2
n into consideration. With the introduction of the extended system [31], the equalised signal of both ZF

and MMSE detector can be represented as

seq = H†y, (2)

where H† =
(
HHH

)−1
HH denotes the Moore-Penrose pseudo-inverse of the channel matrix (or the

augmented channel matrix for the MMSE detector). After equalisation, each element of seq has to be
quantised to the nearest constellation point to finish this detection, i.e., ŝ = QM (seq), where QM is the
quantisation function.

On the other hand, nonlinear SIC detection is also frequently used in practice. In the SIC, a QR
decomposition is applied to the channel matrix, i.e., H = QR, where Q is an Nr×Nt orthogonal matrix
with orthonormal columns and R is an upper triangular matrix. Particularly, there exists a unique QR
factorisation if the diagonal elements of R are required to be positive. Throughout this paper, we assume
this condition is fulfilled. Obviously, if we left multiply matrix R to both sides of Equation (2), the
expression is simplified to

Rseq = v, (3)

where v = QHy. As R is an upper triangular matrix, one can get the equalised last entry of vector seq

by a simple division, which is sSICNt = vNt/RNt,Nt . Then, the estimated value of it can be calculated
by ŝSIC

Nt
= QM

(
sSIC
Nt

)
. By utilising this estimated value and considering the property of matrix R, the

previous element of seq can be obtained by sSIC
Nt−1 =

(
vNt−1 −RNt−1,Nt ŝ

SIC
Nt

)
/RNt−1,Nt−1. Thereby, the

SIC detection is possible to be achieved sequentially, and the nth estimation of it is

ŝSIC
n = QM

(
vn −

∑Nt
i=n+1Rn,iŝ

SIC
i

Rn,n

)
. (4)

B. LR-aided Detectors
To restore the full receive diversity order Nr, the LR technique is applied to the detection. The channel

matrix H can be treated as a lattice basis and each column of H represents a basis vector. The target of LR
is to find a basis that not only supports the same lattice but also has shorter and nearly orthogonal basis
vectors. We denote the lattice reduced matrix as HLR = HT, where T is a complex integer unimodular
matrix and HLR spans the same lattice as H. Therefore, by substituting it into Equation (1) and introducing
the transformed symbol z = T−1s, we have

y = HTT−1s + n = HLRz + n. (5)

Consequently, instead of retrieving the transmitted symbol s directly, an intermediate step can be per-
formed. Clearly, an estimated value ẑ can be achieved from y first. Then, by left-multiplying T to
ẑ, the estimation of s is obtained. This provides the primal procedure of the LR-aided detection. If
the constellation set of the transmitted symbol s is the infinite complex integer plane, then the lattice
reduced constellation set in the z-domain consists of the infinite complex integer plane as well. And this
basic procedure is applicable. However, the square M -ary quadrature amplitude modulation (QAM) is
often applied to the MIMO system, which forms a finite lattice excluding the origin point. Therefore, the
original constellation must be scaled and shifted such that the detection can be conducted on a consecutive
complex integer lattice. Let M denote the finite QAM set, thus s ∈ MNt , and the scaled and shifted
transmitted symbol is defined as

s̃ =
1

α
s +

1

2
1c, (6)
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where α is the minimum Euclidean distance between two constellation points in setM and 1c is an Nt×1
vector whose entries have the same value (1 + j). By substituting Equation (6) into (1), the translated
received signal is given as

ỹ =
1

α
y +

1

2
H1c = Hs̃ + ñ, (7)

where ñ = 1
α
n. Hence, similar to Equation (5), the lattice reduced system model based on the scaled

and shifted expression can be represented as ỹ = HLRz̃ + ñ, where z̃ = T−1s̃. Thus, we can conduct
detections on this modified model.

For the LR-aided linear detection, the equalised value can be computed by z̃eq = H†LRỹ. As the columns
of HLR are roughly orthogonal, the noise amplified by it is much less than the one in Equation (2).
Therefore, the reliability of quantisation on symbol z̃eq is higher than on the symbol seq. And by using (7),
z̃eq can be expressed as

z̃eq =
1

α
H†LRy +

1

2
T−11c. (8)

Now, the remaining part is to retrieve the original transmitted symbol s from z̃eq. As the estimation of z̃eq

is in the z̃-domain, each element of this vector must be quantised to the feasible constellation point of
z̃. The simplest solution (although suboptimal) is to replace this constrained quantisation by an element-
wise integer-rounding operation to get the estimation of z̃eq first, then transform this rounded vector to
the s-domain and use the function QM to recover the original transmitted symbol. Hence, by substituting
z̃ = T−1s̃ into Equation (6), the estimation of the original symbol s is given by

ŝeq = QM
(
αTbz̃eqe − α

2
1c

)
, (9)

where b·e represents the nearest integer rounding function which rounds the input element to the nearest
integer. For complex inputs, it treats the real and imaginary parts individually.

Apparently, the LR can be integrated with SIC detection either. Let the QR decomposition of the lattice
reduced channel matrix be HLR = QLRRLR, and then we can obtain RLRz̃eq = QHLRỹ. By substituting (7),
we have

RLRz̃eq =
1

α
QHLRy +

1

2
RLRT−11c = u, (10)

which has the same structure as Equation (3). Thus, the estimation of z̃eq can also be obtained successively.
The only difference is that the quantisation function QM in Equation (4) has to be replaced by the integer
rounding function. Thereby, the nth element of the estimation ̂̃z SIC is

̂̃z SIC
n =

⌊
un −

∑Nt
i=n+1R

LR
n,i
̂̃z SIC
i

RLR
n,n

⌉
, (11)

where RLR
n,i represents the (n, i)th entry of the upper triangular matrix RLR. Finally, the estimation of the

original signal in the s-domain is determined by

ŝSIC = QM
(
αT̂̃z SIC − α

2
1c

)
, (12)

which completes the LR-aided SIC detection. It is worth mentioning that the sorted QR (SQR) decompo-
sition can be applied to HLR to provide an RLR with optimal diagonal ordering, thus, improves the SIC
detection performance. This motivates us to implement SQR to the SIC detection throughout this paper.
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C. LLL and SA Reduction
Theoretically, the complexity of finding an optimal basis for a lattice is quite high. To reduce the

complexity and make it feasible for the practical problem, some suboptimal solutions are proposed. Among
them, LLL and SA are adopted here as the former is widely used and the latter is considered as an
alternative.

It is well known that a basis is called LLL reduced if it satisfies two conditions: size reduced condition
and Lovász condition. However, this definition is proposed for the real domain. As the channel matrix
H usually has complex entries, a complex LLL (CLLL) which can operate directly on complex bases
is of great interest. To further reduce the complexity, the Siegel condition in [32] is adopted to replace
the Lovász condition. Thus, a CLLL variant is obtained by definition: An M × N matrix H = QR is
Siegel-CLLL reduced if it satisfies the following two conditions,
• complex size reduced condition

|< (Rl,k)| ≤
1

2
|Rl,l| and |= (Rl,k)| ≤

1

2
|Rl,l|,

∀ 1 ≤ l < k ≤M ;
(13)

• Siegel condition
|Rk−1,k−1|2 ≤ ζ|Rk,k|2, ∀ k = 2, . . . ,M, (14)

where parameter ζ is chosen from the interval [2, 4]. This CLLL variant is used for all the experiments
throughout this paper with ζ = 2. By checking the algorithm in [33], one can find that the process of each
iteration can be divided into two parts, size reduction and basis update. For each loop, the size reduction
should be conducted first and the Siegel condition will be evaluated subsequently. If the Siegel condition
is satisfied, the algorithm continues with the next iteration. Otherwise, the basis update process has to
be performed. Clearly, the complexity of this algorithm highly depends on this step. Not only because it
requires the column swapping and matrix multiplication, but also owing to the counter decreasing caused
by it.

Unlike the LLL algorithm which only aims at finding a near-orthogonal basis for the lattice spanned by
the original basis (channel matrix in this article), SA optimises this lattice together with its dual lattice.
Let an M ×N matrix H = [h1,h2, ...,hN ] denote a basis which spans a lattice L, then the basis which
spans the dual lattice of L can be defined as H∗ =

(
H†
)T

= [h∗1,h
∗
2, ...,h

∗
N ]. The Seysen’s metric is

utilised to assess the orthogonality of a basis H, which is

S (H) =
N∑
n=1

‖hn‖2‖h∗n‖2. (15)

It is known that S (H) ≥ N and when H is an orthogonal matrix, equality holds. Thus, SA performs a
basis update on H iteratively until the Seysen’s metric of the updated basis cannot be further reduced.
Based on the different criterion of choosing the basis vector which needs to be updated, two approaches,
lazy implementation and greedy implementation, are proposed. In this paper, we focus on the latter as it
is more efficient in complexity and convergence speed [8], [34]. The detailed algorithm can be found in
[29].

III. PROPOSED ALGORITHMS

In this section, we propose algorithms applying SA to ILR. First of all, the feasibility of adopting SA
to ILR is analysed. Subsequently, we propose a sorted QR based SA algorithm. Finally, by merging this
algorithm with the SIC detector properly, an SA-aided ILR algorithm is introduced.
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Fig. 1: The flow chart for finding the ideal ET of SA.

A. Feasibility Discussion
ILR is a technique which can jointly optimise the LR and the detection process of a system while

maintaining the full diversity. The original ILR is introduced in [23], which first obtains the estimated
symbol by conducting a SIC detection on the partially reduced channel matrix that has to be updated at
each CLLL iteration, then employs an ET scheme to stop the process.

Obviously, ET is the crucial step for reducing the complexity of the ILR algorithm. As the name
describes, ET refers to the methods that can terminate the LR process in advance while still preserving
the same or almost the same performance. However, most ET techniques only focus on terminating the
LR algorithm according to the channel characteristics [19], [21], [22]. The detection process has rarely
been taken into consideration. Intuitively, the LR process can be terminated if the detector can retrieve
the transmitted symbol correctly based on the partially reduced channel matrix. Therefore, ILR conducts
ET based on an RA [24]. Let ŝint denote the estimated symbol which is obtained from the intermediate
values (Q, R and T) in the LR process, and the RA is expressed as

‖ȳ − H̄ŝint‖ ≤ γ
σn√
Nt

, (16)

where the constant γ ≥ 0 is a threshold parameter. If the condition in (16) is satisfied by an estimation
ŝint, this vector will be used as the final estimation, and the remaining iterations of CLLL will not be
executed.

As the SA based linear detector outperforms the CLLL based one [34], an ILR algorithm with SA
is of great interest. Before adopting SA to the ILR, we have to validate that it is feasible to terminate
the SA during its execution process while the detector can still provide the same performance with the
intermediate parameters. Thus, an experiment is conducted to prove it and an optimal ET bound is achieved
in the meantime. The flow chart for finding the ideal ET of SA is given in Figure 1. For each iteration,
we first obtain the ideal estimation ŝLR based on the original SA, see Step 1 in Figure 1. Then, in the
same iteration, another SA is applied to the initial inputs as Step 2. The difference is that whenever there
is an update of the channel matrix during the execution of the second SA, a detection must be made to
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Fig. 2: The average iterations of SA reductions with and without ideal early termination against SNR for a 64-QAM
8× 8 MIMO system in a spatial uncorrelated channel.

acquire an intermediate estimation ŝLRint from the current channel matrix. Further, if ŝLRint = ŝLR, the second
SA process stops. This gives us the optimal ET.

We conduct a simulation on an 8 × 8 MIMO system with 64-QAM under the uncorrelated Rayleigh
fading channel and apply the SA to the augmented channel matrix H in the extended system (recall
that this system facilitates MMSE based detections). The average iterations of an SA reduction with and
without ideal ET against SNR are shown in Figure 2. Obviously, the number of the average iterations
for one LR process is reduced dramatically by introducing ET into the system. The iterations of the
conventional SA keeps increasing and has a trend to converge at 17 times per reduction from the point
SNR ≥ 35 dB. On the other side, the number of iterations of ET-injected SA increases later and slower.
This holds as the SA cannot benefit the SIC detection significantly in the lower SNR range (from 0 dB to
10 dB) as Gaussian noise is the main cause of errors. Consequently, it is unnecessary to conduct the SA
reductions in most instances, which results in a very small number of average iterations of the ideal ET
based SA. With the increase of the SNR, the influence of the Gaussian noise reduces, the SA reduction
starts to function and improves the SIC detection. Hence, the average iterations of the ET-aided SA keeps
growing and reaches the maximum around 4.5 iterations per reduction with SNR = 23 dB. Afterwards,
this value starts to decrease and becomes nearly 0 at SNR = 35. The reason for this decreasing is that
as SNR grows, an increasing number of accurate estimations can be obtained based on the partial SA
reduction with less iterations. Even in some cases, the SA reduction can be totally discarded as the pure
SIC detector can retrieve the correct transmitted symbol directly. Overall, the ET is not only feasible but
also benefits the system significantly, especially in the higher SNR range. It is worth noting that the ideal
ET carried out in this simulation does not reduce the BER performance of the SA based SIC detection at
all. In fact, recalling that the termination only happens at the point when the intermediate estimation is
equal to the original estimation obtained from the SA without ET, i.e., ŝLRint = ŝLR, the BER performance
of the SA based SIC with and without ideal ET are exactly the same.

B. Sorted QR based SA
As discussed above, the SIC detection has to be conducted in the intermediate step of an LR process to

accomplish the ILR, which means the corresponding orthogonal matrix Q and upper triangular matrix R
of the partially reduced channel matrix must be obtained. Conventionally, the SA is realised by updating
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the channel matrix H directly. Thus, an extra QR decomposition is required for each intermediate SIC
detection, which is absolutely impractical as it increases the complexity of the SA dramatically.

Therefore, an alternative algorithm called SQR-SA is proposed here to avoid this. It utilises the SQR
to obtain the initial matrices Q and R from the original channel matrix H first, then updates Q and R
iteratively to complete the SA reduction. The detailed algorithm is presented in Algorithm I. Generally,
after the SQR and initialisation (Line 1-2), each iteration of this algorithm consists of two main parts,
Seysen’s metric computation and basis update. Furthermore, the latter can be partitioned into two steps,
the matrix update and the triangularization.

Algorithm I: Sorted QR based SA

Input: H
Output: Q,R,T
1: [Q,R,T] = Sorted QR (H)
2: G = RHR, G−1, ite = 1, λmax = 1
3: while λmax > 0 do
4: if ite == 1 then
5: for i, j = 1 to Nt, and i 6= j do
6: λi,j =

⌊
xi,j
⌉

with xi,j =
1

2

(G−1
j,i

G−1
i,i

−
Gj,i

Gj,j

)
7: ∆i,j = 2Gj,jG

−1
i,i

(
2<(λ∗i,jxi,j)− |λi,j |2

)
8: end for
9: ite = 0

10: else
11: for i, j = 1 to Nt, with i 6= s , j 6= t do
12: update λ and ∆ with index pairs (i, s), (j, t), (s, i) and (t, j)

according to Line 6 and 7, respectively.
13: end for
14: end if
15: λmax = max (|λ|)
16: (s, t) = arg max

(i,j)
∆

17: if λmax > 0 then
18: Gs,k = Gs,k + λ∗s,tGt,k, Gk,s = G∗s,k, k 6= s
19: Gs,s = Gs,s + 2<(λ∗s,tGt,s) + |λ∗s,t|2Gt,t
20: G−1

t,k = Gt,k − λs,tG−1
s,k, G

−1
k,t = (G−1

t,k)∗, k 6= t

21: G−1
t,t = G−1

t,t − 2<(λs,tG
−1
t,s ) + |λs,t|2Gs,s

22: R:,s = R:,s + λs,tR:,t

23: T:,s = T:,s + λs,tT:,t

24: if s < t then
25: for m = s : t− 1 do
26: if m == s then
27: tt = t
28: else
29: tt = m+ 1
30: end if
31: for n = tt : −1 : m+ 1 do
32: Θ =

1

‖Rn−1:n,m‖

[
R∗n−1,m R∗n,m
−Rn,m Rn−1,m

]
33: Rn−1:n,m:end = ΘRn−1:n,m:end

34: Q:,n−1:n = Q:,n−1:nΘH

35: end for
36: end for
37: end if
38: end if
39: end while

Metric Computation : line 4-16

Basis Update : line 17-38
{Matrix Update (line 18-23)

Triangularization (line 24-37)

In the Seysen’s metric computation part, all update parameters λi,j and their corresponding decrease
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on the Seysen’s metric ∆i,j must be initialised at the first iteration (Line 4-9). In the following iterations,
λi,j and ∆i,j can be updated partially (Line 10-14). Afterwards, we have to find the maximum absolute
value λmax over all update parameters λi,j (Line 15) and obtain the indices (s, t) of the update parameter
which can offer the maximum decrease on the Seysen’s metric (Line 16). In addition, the indices pair
(s, t) and their corresponding update parameter λs,t are utilised for updating the basis in the following
part.

Considering that the target of the SA reduction is to minimise the Seysen’s metric given in (15), which
can be equivalently transferred to render all the update parameters λ to 0 [29], thus, for the greedy
approach, the basis update part aims at reducing the basis with the update parameter whose indices can
provide the maximum decrease on the Seysen’s metric, i.e., λs,t. Apparently, the condition of entering
the basis update part is λmax > 0. From Line 18-23, the Gram matrix G, its inverse G−1, the triangular
matrix R and the mapping matrix T are updated according to their updating rules with parameter λs,t,
respectively. However, the update on R may destroy the upper triangularity of it. For example, if the 4th

column of R is added to the 2nd column, the entries R4,2 and R3,2 are not zeros any more. Therefore,
when s < t, the process triangularization must be conducted to recover this property of R (Line 24-
37). In particular, the Givens rotation is applied recursively to null these undesirable entries and make
the diagonal elements of R real and positive again. Further, the orthogonal matrix Q has to be updated
correspondingly to make the multiplication of QR unchanged. And matrix Θ in line 32 is the Givens
rotation matrix. After the basis update part, the SQR-SA algorithm enters the metric computation part in
the next iteration (Line 11-13), which renders the values of λs,t and ∆s,t to 0.

C. SA based ILR
From the previous discussion, we learn that the SA reduction can be realised by updating Q and R

iteratively. This property ensures that the SIC detection can be integrated with SQR-SA at each iteration
without conducting an extra QR decomposition. Thus, we can terminate the SA process based on the
estimations obtained from the SIC detector, according to the RA criterion, which underlays the SA based
ILR. To realise this algorithm, the RA in Equation (16) must be extended to the z-domain, which is∥∥QHỹ −Rz̃

∥∥2 ≤ 1

Nt

(γσn
α

)2
. (17)

Intuitively, the complexity of this algorithm is very high if we perform a SIC detection at each iteration.
Therefore, some useful properties are applied to reduce the complexity.

First, there are two processes, i.e., matrix update and triangularization, in the basis update part of the
SA-ILR. If only the matrix update is carried out (when ≥ t), then the estimations obtained from the SIC
detector are the same before and after this process. Hence, there is no need to conduct the SIC detection as
the estimation is identical to the one in the last iteration. On the other hand, if a triangularization process
appears (when s < t), then part of the matrix R is reconstructed, which leads to a change in the result
of the SIC detection. In this case, the SIC must be conducted. Overall, considering that we just need to
conduct SIC detection after a triangularization process, the complexity can be reduced significantly by
applying this into the algorithm.

Second, by scrutinising the triangularization procedure, one can conclude that the SIC and RA only
need to be partially recalculated. When the sth column of R is updated by the tth column vector (recall
s < t in this case), after the triangularization process, the (t+1)th to Nt

th row vectors of R stay the same,
as well as the entries with the corresponding indices of vector u. By revisiting Equation (10) and (11),
we see that the estimations with indices larger than t do not change. Therefore, the entries need to be
recomputed for the SIC, and RA steps are reduced.

Based on these properties, we propose the algorithm SA-ILR which is presented in Algorithm II. In
general, it can be divided into three parts, partial computation, constrained termination and SA reduction.
In the first part, the SIC detection and RA are partially recalculated according to the previous description
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and this process is ended if the RA criterion is not satisfied (see Line 5-15). Afterwards, we enter the
constrained termination part. If the termination requirement is fulfilled, this process will be activated. The
constraint ŝ==

(
αTz− α

2
1c
)

in Line 17 of Algorithm II can improve the accuracy of the estimation as it
eliminates the demodulation error caused by QM. However, it also induces an increase in the complexity
as additional iterations may be conducted to meet this constraint. Therefore, the tradeoff of this should
be taken into consideration when using this algorithm. A discussion of the constrained and unconstrained
terminations will be made based on numerical results in the next section. Finally, the algorithm enters the
SA reduction part. It is quite similar to the algorithm SQR-SA except that two additional operations are
included. One is the update of the corresponding vector u for SIC detection in the triangularization process,
see line 24 in Algorithm II. The other one is to provide an evidence (the variable flag in Algorithm II)
of the triangularization to start the partial computation part.

It is worthy to point out that the SA-ILR may have a better BER performance than the SQR-SA based
SIC detection. This is due to the fact that we may achieve a matrix R with better diagonal ordering during
the SQR-SA process to facilitate a better SIC detection.

Algorithm II: SA based ILR

Input: H,y, ϕ = 1
Nt

(γσn
α

)2
Output: ŝ
1: [Q,R,T] = Sorted QR (H)
2: G = RHR, G−1, ite = 1, λmax = 1
3: u = 1

α

(
QHy + R1c

)
, l = Nt, τ = Nt, f lag = 1

4: while TRUE do
5: if flag == 1 || λmax == 0 then
6: for k = τ : −1 : 1 do
7: π = uk −

∑Nt
j=k+1Rk,jzj

8: zk = bπ/Rk,ke
9: l = k

10: if ϕ > 0 then
11: ak = ak+1 + |π −Rk,kzk|2
12: if ak > ϕ → break
13: end if
14: end for
15: if al ≤ ϕ || λmax == 0 then
16: ŝ = QM

(
αTz− α

2
1c
)

17: if ŝ ==
(
αTz− α

2
1c
)
|| λmax == 0→ break

18: end if
19: end if
20: Metric Computation (Line 4-12 in Algorithm I)
21: if λmax > 0 then
22: Matrix Update (Line 14-19 in Algorithm I)
23: if s < t then
24: Modified Triangularization (Take line 21-32 in Algorithm I and add

un−1:n = Θun−1:n after line 30.)
25: τ = max (l, t)
26: flag = 1
27: else
28: flag = 0
29: end if
30: ∆max = 0
31: end if
32: end while

Partial Computation : line 6-14
Constrained Termination : line 15-18

SA Reduction : line 20-31

{ Metric Computation (line 20)
Matrix Update (line 22)
Modified Triangularization (line 24)
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D. Analytical Computational Complexity
As we know, the computational complexity of an algorithm is vital in a communication system,

especially for the detection part at the receiver side. Thus, we analyse the complexity of the proposed
SA-ILR algorithm in this subsection. The floating point operations (FLOPs) are employed here as the
metric to evaluate the computation complexity. Note that one FLOP represents a complex summation or
a complex multiplication here.

By sifting through Algorithm II, one can observe that the exact complexity of the SA-ILR is determined
by the required iterations of its five parts, i.e., partial computation, constrained termination, metric
computation, matrix update and modified triangularization. We assume that the total iterations of these
parts are L1, L2, ..., L5, respectively. Therefore, the overall FLOPs of the algorithm in the worst case can
be calculated by

L1(N
2
t +6Nt)+L2(2N

2
t +2Nt)+L4(20Nt−16)

+
[
12(Nt−1)2+(L3−1)48(Nt−1)

]
+L5(6Nr+6Nt+1).

(18)

In addition, to simplify Equation (18), the corresponding asymptotic expression of the SA-ILR can be
achieved as O

(
(L1+2L2+12)N2

t

)
, while the asymptotic expression of the CLLL-ILR is O

(
(L1+2L2)N

2
t

)
.

Note that the values of L1 and L2 in CLLL-ILR are different from their values in the case of SA-ILR.
Furthermore, according to these asymptotic expressions, it is easy to conclude that the partial computation
and constrained termination parts contribute most to the complexities of both methods.

On the other hand, apart from the iteration numbers, the most significant difference between the two
algorithms is that the initialisation (Line 5-8 in Algorithm I) of the metric computation part for the SA-
ILR brings additional O

(
12N2

t

)
FLOPs. However, this extra calculation will vanish when L3 is 0. In this

case, the SA-ILR only executes the partial computation and the constrained termination parts in the first
iteration, and ends before entering the SA reduction part (Line 20-31 in Algorithm I). Thus, the total
iteration of the out loop, L1 and L2 are all equal to 1. Consequently, the SA-ILR degrades to a pure SIC
detector. It is worth mentioning that this pure SIC detector usually exhibits a comparable performance to
the SA based one as the ET condition (al ≤ ϕ in Line 15 of Algorithm I) must be satisfied. Moreover,
the same degradation to the pure SIC detector applies to the CLLL-ILR algorithm as well, which makes
the complexity of SA-ILR and CLLL-ILR equal in this situation. Therefore, the complexity of SA-ILR
is not always O

(
12N2

t

)
higher than that of CLLL-ILR. More importantly, this property ensures that the

two have relatively close complexity in the high SNR range, which will be validated in the following
simulation section. Overall, the complexity orders of both two algorithms are the same, i.e., O

(
N2
t

)
.

IV. SIMULATION AND DISCUSSION

In this section, we provide our simulation results to evaluate the proposed SA based algorithms under
both spatial uncorrelated and correlated channels. First, Section IV-A provides results validating the
reliability and effectiveness of the SQR-SA scheme. Afterwards, in Section IV-B, we evaluate the influence
of the early terminations parameter γ on the performance of the BER and the complexity for the ILR
schemes. Finally, a detailed and in-depth comparison between the proposed SA-ILR scheme and the
LLL-ILR approach is provided in Section IV-C.

In these simulations, both the spatial uncorrelated channel (also known as canonical channel) and
the correlated channel are considered. For the former, each entry of its channel matrix H is an i.i.d
complex Gaussian distributed variable with zero mean and unit variance. As for the latter, by assuming
the correlation between the receiving antennas and that between the transmitting antennas are independent,
the channel matrix of the spatial correlated model can be obtained from [11], [35]. Note that the antenna
array considered in this correlated model is the uniform linear array (ULA). Therefore, based on the type
of channels, two different simulation scenarios are considered and their corresponding settings are given
in Table I. Moreover, if not specified, the MMSE criterion is employed to all detection algorithms in the
following.
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Table I: Simulation parameters

Parameters Notation
Values

Uncorrelated scenario Correlated scenario

MIMO size Nt ×Nr 8× 8 64× 64

Modulation M 64-QAM 16-QAM

Spatial correlation index ρ 0 0.2

RA constant γ Fixed, Optimal Optimal

A. SQR-SA Verification
First of all, the proposed SQR-SA must be verified by comparing with the SQR-CLLL [23] in a scenario

with uncorrelated channels. Note that the Siegel condition is employed in this SQR-CLLL algorithm. And
the algorithm parameter ζ=2.0 utilised in the original SQR-CLLL is adapted to our simulations as well.
Meanwhile, we have to demonstrate that the SQR-SA has comparable performance as the original SA.
Therefore, a simulation of the conventional SA based SIC (SA-SIC) is introduced to the simulation as
well, which applies an SQR decomposition to the SA reduced channel matrix at the end of the SA to
accomplish the SIC detection. The performance of the SA-SIC can also provide the lower bound for the
SA scheme. Finally, the plain SIC without LR is also included to show the baseline of the detection.

0 5 10 15 20 25 30 35

SNR (dB)
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SQR-SA-SIC
SQR-CLLL-SIC
SIC

Fig. 3: The BER performance of the conventional SIC detection and different LR-aided SIC detections against
SNR for a 64-QAM 8× 8 MIMO system under a spatial uncorrelated channel.

The simulation result is given in Figure 3. As we can see from the plots, all the LR-aided SIC detectors
outperform the plain SIC detector in the higher SNR range starting from 23 dB. Both two SA based SIC
detections have a better performance than the CLLL aided one. Apparently, the SQR-SA-SIC does not
have the same BER as the traditional SA-SIC. This is due to the fact that the latter performs the SQR
at the final step, which provides a better-sorted R matrix to improve the SIC detection. However, if we
want to conduct the SIC in the intermediate steps of the traditional SA to enable the ET, the complexity
is greatly increased as extra SQR decomposition is required before each SIC detection. Hence, although
the performance is slightly weakened by applying SQR-SA, it is still valuable as on the one hand it is
better than the SQR-CLLL and on the other hand it plays an essential role in the SA-ILR algorithm.
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B. RA Constant γ
Obviously, in order to perform a successful ET, it is crucial to select a proper threshold parameter γ

for RA. If γ is too small, the correct estimations are more likely not to satisfy the RA condition. And
if γ is set too big, the wrongly detected symbols have a higher chance to meet the RA requirement, thus
to trigger the ET at the time. To study how this parameter γ influences the BER performance and the
complexity of ILR algorithms, we fix the SNR of the system and conduct simulations with a set of γ
values. In addition, recall that the constraint in line 17 of Algorithm II can be removed, therefore we have
the constrained and unconstrained versions of the SA-ILR algorithm, as well as the CLLL-ILR algorithm.
In the following, the impact of this constraint on the system performance against different γ will also be
investigated and discussed.

2 4 6 8 10 12 14 16 18 20

.
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SA-ILR Uncon.
SA-ILR Con.

Fig. 4: The BER performance of ILR schemes against different γ with SNR = 32 dB for a 64-QAM 8×8 MIMO
system under a spatial uncorrelated channel.

1) RA constant in uncorrelated scenario: We first conduct simulations in the uncorrelated scenario
with SNR = 32 dB. The plots of the BER against different RA parameters γ for the four ILR algorithms
are illustrated in Figure 4. In this case, all plots reach their optimal BER performance with parameter
γ = 11 while the SA based algorithms have lower BERs. Intuitively, the SA-ILR algorithms are most
obviously superior to the CLLL-ILR schemes when γ∈ [9, 14], which is called the feasible interval. We
can see that this interval has a relatively broad range, which at least covers the optimal γ for SNR from
27 dB to 36 dB (see the optimal γ set in subsection IV-C2). Thus, an SNR degradation within a relatively
wide range, i.e., 9 dB in this case, does not affect the system performance too much.

Generally, the SA based algorithms are more sensitive to the variation of γ. On the one hand, their
performance degrades sharply when decreasing γ from 11 to 1 and becomes much worse than the CLLL
based algorithms with γ ≤ 9. The reason is as follows. When γ decreases in the interval [1, 11], the
termination condition becomes too tight, such that even if the correct symbol appears in the detection
process, it still cannot satisfy the termination condition, thus, the algorithms carry on to process another
symbol which makes the performance of the system even worse. On the other hand, increasing γ from the
optimal point 11 can also deteriorate the performance of the SA schemes. The reason is that, as γ growth,
the termination condition gets looser, which allows these algorithms to terminate easier before finding the
correct symbol, hence, degrades the system performance. Finally, the introduction of the constraint can
slow down the degradation trend for both SA and CLLL based algorithms and make the systems more
robust to the deviation of the RA parameter γ.
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Now, we analyse the relationship between the complexity and the RA constant γ. As discussed in
Section III-D, the iterations of the partial computation and constrained termination parts, i.e., L1 and L2,
contribute most to the complexity for both the SA-ILR and the CLLL-ILR schemes. Thus, we include
these two parameters in our simulations. In addition, the average outer loop iterations are employed to help
analyse the composition of complexity for each scheme. And we utilise the average FLOPs to evaluate
the overall complexity of the proposed schemes.
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Fig. 5: The complexity parameters and FLOPs of ILR schemes against different γ with SNR = 32 dB for a
64-QAM 8× 8 MIMO system under a spatial uncorrelated channel.

The simulation results of these complexity parameters against different γ for each ILR scheme with
successful reductions are plotted in Figure 5. It is evident that when γ is chosen too small, i.e., γ ∈ [1, 8],
not only the complexities of all schemes increase dramatically as γ decreases, their performance degrades
as well (see Figure 4). In particular, this phenomenon is more obvious for the SA-ILR methods. Indeed,
their BER performance is worst than the CLLL-ILR schemes and enjoy much higher complexities. On
the other hand, the constrained and unconstrained algorithms have the same L1, L2, iterations and FLOPs
in this lower γ range.

Afterwards, we evaluate the complexities of these schemes with larger γ values. Evidently, according
to Figure 5, the FLOPs of the SA based algorithms become close to the CLLL based ones starting from
the point γ = 9 (which is also the starting point for the ideal interval of the CLLL based algorithms). In
order to further study how close the performance gaps between these ILR schemes can be, we enlarge
the plots of average FLOPs against γ ranges from 9 to 20, which is illustrated in Figure 6. As we can
see from it, the FLOPs of the constrained schemes and the unconstrained ones are almost the same when
γ ∈ [9, 14] for both CLLL-ILR and SA-ILR. Furthermore, the FLOPs of the SA-ILR and CLL-ILR
algorithms are almost constants when γ ranges from 10 to 14, and the former is just around 100 higher
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Fig. 6: The FLOPs of ILR schemes against different γ with SNR = 32 dB for a 64-QAM 8× 8 MIMO system
under a spatial uncorrelated channel.

than the CLLL-ILR methods. On the other hand, when the RA constant γ ≥ 15, the FLOPs of all schemes
decrease. In addition, the decreasing speed of the constrained algorithms is slower than the corresponding
unconstrained ones. This is because that the restricted schemes enjoy larger iterations of the constrained
termination, i.e., the average L2, as shown in Figure 5. Consequently, the BER degradation speed of the
constrained methods is slower than the unconstrained ones, which can be seen from Figure 4.

2) RA Constant in Correlated Scenario: Now, we examine the RA constant γ in a 16-QAM 64× 64
MIMO system under the spatial correlated channel. Figure 7 illustrates the BER performance of the
ILR schemes with different values of γ. Basically, by comparing it with Figure 4, we can draw the
similar conclusions as in the uncorrelated scenario, except two major different observations. First, for
the unconstrained ILR schemes, the feasible interval in which the SA-ILR outperforms the CLLL-ILR,
i.e., γ ∈ [4, 21], is much wider than that in Figure 4. Second, by introducing the constraint (in line 17
of Algorithm II) to these ILR algorithms, their BER performance degradation when γ > 21 disappears.
The reason for these two differences is that 16-QAM 64 × 64 MIMO system is adopted here, as lower
modulation order can make the system less sensitive to the variation of γ and larger size of MIMO makes
the range of effective γ larger.

As the relationship between the complexity parameters (i.e., L1, L2, iterations) and the FLOPs has
already been explicitly discussed in Section IV-B1, thus, we only provide the plots of the average FLOPs
against γ in Figure 8 to demonstrate how the complexity of the ILR schemes is influenced by the parameter
γ under correlated channels. It can be seen that when γ is in the interval [4, 20], the FLOPs of constrained
ILR algorithms are equal to their correspondence unconstrained algorithms while providing the same BER
performance (see Figure 7). From γ = 21 on, the FLOPs of the constrained algorithms increase as a result
of maintaining their BER performance. Moreover, the increase of the SA-ILR is higher than that of the
CLLL-ILR. On the other hand, the FLOPs of the unconstrained schemes drop quickly as they can be
terminated easier, which leads to the degradation of their BER performance.

In addition, to verify the relationship between SNR and γ, we also conducted the above simulations
with other SNRs in both correlated and uncorrelated scenarios. The major observation is that, as the SNR
increases, the feasible interval of γ moves to the right along the x-axis, which results in a growth on the
value of the optimal γ.
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Fig. 7: The BER performance of ILR schemes against different γ with SNR = 35 dB for a 16-QAM 64 × 64
MIMO system under a spatial correlated channel.
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Fig. 8: The FLOPs of ILR schemes against different γ with SNR = 35 dB for a 16-QAM 64× 64 MIMO system
under a spatial correlated channel.

C. Comparison between SA-ILR and CLLL-ILR
In order to evaluate the proposed SA-ILR algorithm, the CLLL-ILR is included in the simulation as

well. Similar to the SA-ILR, the CLLL-ILR is also derived from the corresponding SQR based scheme,
i.e., SQR-CLLL, as given in [23]. Meanwhile, the LR aided SIC detections without ET are also utilised
to examine the performance of the ILR algorithms, which includes the SQR-CLLL, SA and SQR-SA
based SIC detections. Furthermore, the plain SIC detection, the ML detection and a state-of-the-art LR
based method, i.e., the Lagrangian dual relaxation lattice decoding (LDR-LD) [36], are also included
as performance metrics. In the following, we compare the performance of these schemes under both
uncorrelated and correlated scenarios with different γ settings, i.e., uncorrelated scenario with fixed RA
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constant γ, uncorrelated scenario with optimal RA constant γ and correlated scenario with optimal RA
constant γ. Note that the BER of all these schemes are extremely close when the SNR is low. Therefore,
to observe the performance difference among these approaches, we mainly focus on the high SNR regions,
i.e., [20 dB,36 dB] in the uncorrelated channel scenario and [30 dB, 45 dB] in the correlated channel
scenario.

1) Uncorrelated scenario with Fixed RA constant γ: In conventional CLLL based ILR, the authors
examined the BER performance of the proposed ILR with a fixed RA threshold parameter, which is 18.2
in their work as this value serves the most cases with a BER of 10−3 for SNR ≤ 33 dB (see [23]).
Intuitively, as the suitable γ that preserves a BER with 10−3 in our scenario has been obtained as well
(see Figure 4), we conduct a simulation with fixed RA parameter γ = 11 at first. The BER performance
against SNRs of these schemes is illustrated in Figure 9. Based on it, some conclusions can be drawn in
the following.
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Fig. 9: The BER performance of ILR schemes against SNR with fixed γ for a 64-QAM 8 × 8 MIMO system
under a spatial uncorrelated channel.

Clearly, in comparison to the ML and LDR-LD methods, all ILR aided schemes have relatively lower
performance, while they spend significantly less computing resource, i.e., have a quite lower complexity
(which can be validated in the discussion of complexity in the following paragraphs). For a system that
has fewer limits on computing resources, the ILR schemes are not preferred. On the other hand, the ILR
aided schemes have a similar complexity but a higher performance than the SIC detection. Hence, it is
meaningful and gainful to investigate these ILR based schemes as they are able to boost the performance
of computing-resource-limited systems.

Secondly, the SA-ILR outperforms the conventional CLLL-ILR. The improvement is significant and
evident in the high SNR range. When the BER is equal to 10−3, the SA based ILR is 1 dB better than
the CLLL-ILR. And when the BER is required to be less than 10−4, the necessary SNR of the former is
almost 4 dB less than the latter.

Thirdly, with the increasing of SNR from 20 to 31 dB, the BER performance of the CLLL-ILR and the
SA-ILR are approaching to their lower bound, i.e., the BER of SQR-CLLL-SIC and SA-SIC, respectively.
However, from 32 dB on, this trend stops, and the performance gaps between these ILR schemes and
their corresponding lower bound are increasing on SNR. More importantly, the BER floors of these ILR
approaches start to appear after 33 dB. This holds as we fixed γ = 11 in this simulation, which is too small
for the ET process in the higher SNR range, thus, the termination cannot be triggered in time and leads
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to estimation errors. However, this issue can be solved by choosing γ properly, which will be discussed
later on in Section IV-C2.

Fourthly, the performance of the SA-ILR is surprisingly better than the SQR-SA aided SIC detection
with SNR ranges from 28 to 33 dB. This holds as though the channel matrix is not thoroughly SA reduced,
during the basis update process of SA-ILR, an R matrix with better diagonal ordering may be achieved,
which can be much closer to the R matrix acquired from the original SA aided SIC detection. Indeed,
if γ is chosen properly, the performance of SA-ILR should be very close to the SA-SIC detection, which
is the lower bound of the BER.

Last but not least, the constrained algorithms are superior to the unconstrained ones in the BER
performance. From 23 to 30 dB, they are slightly better than the unconstrained schemes. And after
31 dB, the deterioration speed of the constrained methods are relatively slower. However, they also bring
the undesirable complexity increase to the system.
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Fig. 10: The complexity parameters and FLOPs of ILR schemes against SNR with fixed γ for a 64-QAM 8× 8
MIMO system under a spatial uncorrelated channel.

Now we discuss the complexity in the following. For this system with fixed RA constant γ under
Rayleigh channel, the average L1, L2, iterations and FLOPs against SNR are illustrated in Figure 10.

First of all, we make a comparison between the constrained and the unconstrained algorithms. Appar-
ently, the FLOPs of the two unconstrained algorithms are lower when SNR ≤ 27 dB. With the increase
in SNR, they are approaching the FLOPs of the corresponding constrained algorithms. By checking the
plots of average L2, we can explain it easily. For the unconstrained schemes, their L2 are always 1, which
means the algorithm terminates easier, thus, leads to a smaller L1 and less outer loop iterations. Another
interesting point is that the unconstrained algorithms only begin to function when the SNR approaches
24 dB, which is the point where the LR-aided detections start to outperform the traditional SIC detection
if we refer to Figure 9. Therefore, the huge amount of operations brought by the introduction of the



19

constraint before this point can be regarded as useless and unnecessary. Actually, before SNR = 24 dB,
the complexity of the unconstrained algorithms are equal to the SIC detection.

After evaluating the complexities of the constrained and the unconstrained schemes, we compare the SA-
ILR with the CLLL-ILR here. In general, the complexity of the former is higher than the latter, especially
for the constrained scheme. When considering the unconstrained SA-ILR, there exists a relatively greater
average FLOPs gap between it and the unconstrained CLLL-ILR with SNR ∈ [26, 30] dB. However,
the BER performance improvement of SA-ILR is not significant within this SNR range. Thus, we can
choose a larger γ set instead of the optimal one to reduce the complexity. From SNR ≥ 30 dB, the BER
improvement of the unconstrained SA-ILR is more obvious. It also follows that the average L1, L2 and
iterations for both SA and CLLL based ILR schemes become the same. However, there still exists a small
FLOPs gap. As discussed in Section III-D, this is because of the additional O

(
12N2

t

)
FLOPs for the

initialisation of the metric computation in the SA-ILR algorithms. When the average iterations turn to 1,
the gap decreases and the FLOPs of all schemes approach the SIC detection. It is also worth mentioning
that although the LDR-LD outperforms the proposed SA-ILR, the FLOPs of it in an 8×8 MIMO system
with 64-QAM symbols for SNR = 22 dB is about 3×104, which is not in the same order of magnitude
as the SA-ILR.

2) Uncorrelated Scenario with Optimal RA constant γ: From the analysis above, we learn that, instead
of using the fixed RA parameter, the unstrained algorithms can achieve the same performance as the
constrained algorithms with a set of properly selected parameters. Therefore, a rough search for parameter
γ over the integer set [4,18] for SNR ranges from 20 to 36 dB is conducted. And the corresponding optimal
γ set for both SA-ILR and CLLL-ILR is [9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12]. They have
the same optimal γ set because, on the one hand, this is the optimal set based on the rough search. On
the other hand, we also have shown that the optimal γ of SA-ILR is also the optimal one of CLLL-ILR
in the previous simulation in Section IV-B.
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Fig. 11: The BER performance of ILR schemes against SNR for 64-QAM a 8×8 MIMO under a spatial uncorrelated
channel with optimal γ.

We first investigate the BER performance of these ILR schemes, which is shown in Figure 11. Two
major observations can be achieved by comparing it with Figure 9. First, the performance of all algorithms
is improved in the lower SNR range from 23 to 27 dB, especially for the unconstrained cases. Second,
for the higher SNR part, both SA based ILR algorithms benefit from the new γ set. Their performance is
close to the conventional SA based detection, and the unconstrained one matches the constrained algorithm
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perfectly. More importantly, the error floors presented in Figure 9 for SA-ILR schemes in the higher SNR
range vanished, which validates that selecting γ appropriately is an effective solution to the error floors.
On the contrary, the performance of the CLLL based ILR algorithms in this higher SNR range is not
improved significantly by choosing γ optimally.
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Fig. 12: The complexity parameters and FLOPs of ILR schemes against SNR for a 64-QAM 8× 8 MIMO system
under a spatial uncorrelated channel with optimal γ.

Afterwards, we analyse how the complexities of the SA-ILR and CLLL-ILR algorithms are influenced
by introducing the optimal γ set into them. Similar to the case with fixed γ under Rayleigh channel, the
average number of L1, L2, outer iterations and FLOPs against SNRs are also given in Figure 12. Definitely,
by comparing with the plots in Figure 10, the overall complexity of all ILR schemes is increased in this
case. For the lower SNR range, most of the complexity increase is between 23 to 27 dB, which is just the
interval that the BER of all ILR schemes is improved noticeably as analysed in the previous paragraph. In
addition, also in this SNR interval, we can observe that the complexity growth brought by the optimal γ for
the SA-ILR is higher than for the CLLL-ILR. Similarly, this complexity growth trend can be applied to the
constrained and unconstrained algorithms either, in which the constrained one experience more complexity
increase when compared to the corresponding unconstrained scheme. Starting from SNR = 28 dB, the
growth in the FLOPs of all ILR algorithms is negligible. However, the BER performance improvement
for the SA-ILR methods is significant by referring to Figure 9 and Figure 11. It should be mentioned
that the average FLOPs of SA-ILR algorithms is still greater than that of the CLLL-SA schemes in the
higher SNR range, which is different from the results that will be discussed in the correlated scenario.

To further verify the performance-complexity tradeoff of the ILR schemes, we utilise a utility function
to ease the analysis, which is defined as Λ = PeNF , where Pe and NF represent the value of BER and
the number of FLOPs, respectively. Apparently, under the same conditions, the smaller the value of Λ, the
better the algorithm performs. Figure 13 illustrates Λ against different SNRs for ILR schemes and the SIC
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Fig. 13: The complexity-performance tradeoff of ILR schemes for a 64-QAM 8×8 MIMO system under a spatial
uncorrelated channel with optimal γ.

detection. It can be observed that from 20 dB to 26 dB, the SIC detector is superior to all ILR schemes.
With the increase of SNR, CLLL-ILR schemes start to outperform SIC and SA-ILR detectors. However,
when the SNR is larger than 30 dB, SA-ILR algorithms surpass CLLL-ILR schemes as well as the SIC
detector. Moreover, the advantage of SA-ILR schemes becomes more significant as the SNR increases.
On the other hand, when comparing the constrained ILR schemes with the corresponding unconstrained
approaches, the latter is always better or at least equal to the former.

3) Correlated Scenario with Optimal RA constant γ: In this part, we evaluate the performance of the
proposed SA-ILR schemes under the spatial correlated channel. The optimal γ set for both SA-ILR and
CLLL-ILR approaches in this scenario with SNR from 30 dB to 45 dB is [10, 12, 14, ..., 39]. Similar to
Section IV-C2, we first examine the BER performance of SA-ILR schemes by comparing with CLLL-ILR
and other detection methods, as shown in Figure 14. In general, the behaviour of these schemes are quite
similar to that in the uncorrelated scenario (see Figure 11). The most significant difference is that SA-ILR
based schemes surprisingly outperform the SA-SIC detector, which is supposed to be the lower bound
of SA-ILR algorithms. This holds as when introducing the spatial correlation into the channel matrix,
the positive effect of fully SA reduction is diminished. However, during the intermediate steps of SA,
a non-fully reduced channel matrix may mitigate the influence brought by the spatial correlation, thus
facilities the SIC to produce better detection results.

Now, we compare the complexity of SA and CLLL based ILR algorithms in the correlated scenario.
As the relationship between the complexity parameters and the FLOPs has already been discussed in
Section IV-C2, and this does not change, thus we only provide the simulation results of FLOPs against
SNR here, as given in Figure 15. It can be seen that the plots in this figure actually corresponding to
the plots with SNR ranges from 27 dB to 36 dB in Figure 12d. Note that a logarithmic scale is used for
the y-axis in Figure 15 to provide better illustration. By comparing these two figures, most conclusions
drawn in the uncorrelated scenario of Section IV-C2 apply to here either. The greatest difference is that,
in this scenario, starting from SNR = 39 dB, the average FLOPs of the SA-ILR becomes lower than that
of the CLLL-ILR. This is significant, especially considering that their BER is also evidently lower than
CLLL-ILR schemes’ BER in this SNR range, which makes the SA-ILR superior to CLLL-ILR in both
complexity and performance.

Finally, the tradeoff between the complexity and the performance of both SA and CLLL based ILR
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Fig. 14: The BER performance of ILR schemes against SNR for a 16-QAM 64×64 MIMO system under a spatial
correlated channel with optimal γ.
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Fig. 15: The FLOPs of of ILR schemes against SNR for a 16-QAM 64 × 64 MIMO system under a spatial
correlated channel with optimal γ.

algorithms is analysed by utilising the same utility function. The simulation results are provided in
Figure 16. It can be observed that, unlike in the uncorrelated scenario with optimal γ, CLLL-ILR schemes
cannot outperform both SIC and SA-ILR methods at the same time throughout the whole SNR range.
In other words, when considering both complexity and BER performance in the system design, the SIC
detector should be employed when SNR < 37 dB while SA-ILR schemes must be utilised when SNR
≥ 37 dB.
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V. CONCLUSIONS

In this paper, two novel algorithms are introduced in order to apply SA to ILR. First, the proposed SQR-
SA algorithm offers a new SA reduction solution by updating the matrices that are obtained from the QR
decomposition. Second, the proposed SA aided ILR algorithm allows performing the SA reduction together
with the SIC detection and terminating the process at the ideal time. They are explicitly explained using
detailed pseudo-codes. Afterwards, the effectiveness of the SQR-SA algorithm is validated by simulation
results first as it plays the key role in the SA based ILR scheme. To evaluate the performance of the
SA-ILR, conventional CLLL based ILR is utilised for comparison. Two variants, the constrained and
unconstrained cases for both SA and CLLL based methods are studied. According to the simulations, the
proposed SA-ILR outperforms the CLLL-ILR entirely concerning the BER performance. More importantly,
in high SNR regions, the complexity of the SA-ILR is lower than that of the CLLL-ILR in the correlated
channel, while only slightly higher than the complexity of the CLLL-ILR in the uncorrelated channel. In
low SNR ranges, the cost on the complexity is acceptable if the unconstrained SA-ILR is utilised with
an appropriately chosen RA parameter set.
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